一、基本信息
陈守文,博士,二级教授,博士生导师
办公电话:027-88663882-8046
电子邮件:chenshouwen(at)hubu.edu.cn
社会兼职:湖北省环境微生物工程技术研究中心主任,湖北大学绿康生物工程研究所所长;湖北大学第八届学术委员会副主任,湖北大学科学研究专门委员会主任;中国农业生物技术学会第五届理事会理事,中国农业生物技术学会微生物技术分会常务理事,湖北省生物工程学会理事,湖北省遗传学会理事,湖北省发明协会第五届理事会理事等
荣誉称号:湖北省先进工作者(2018),国家人才计划(2015),国家有突出贡献中青年专家(2015),国务院政府特殊津贴获得者(2016),教育部人才计划(2007),武汉市光谷人才计划(2016)
研究领域:芽胞杆菌代谢工程、发酵工程、蛋白高效表达、代谢组学及其产品应用开发
二、教育背景
1995.09–1998.06 无锡轻工业大学发酵工程专业,获工学博士学位
1989.09–1992.06 华中农业大学微生物学专业,获理学硕士学位
1985.09–1989.06 华中师范大学生物学专业,获理学学士学位
三、工作经历
2014.06至今 澳门尼威斯人网站8311,教授
2000.01–2015.03 华中农业大学生命科学技术学院,副教授、教授
2012.01–2012.04 美国俄克拉荷马大学访问学者
2011.04–2012.01 美国德州农工大学访问学者
1992.07–1999.12 华中师范大学食品科技学院,助教、讲师
四、科研项目
(一)主持承担20余项国家、省部级科研(子)课题
1. 富含1-脱氧野尻霉素的功能性纳豆食品研制,武汉市科技局,2020–2022
2. 转录因子AbrB调控地衣芽胞杆菌能量代谢机制分析,国家自然科学基金,项目批准号31972849,2019–2022
3. 国家重点研发计划《高版本模式微生物底盘细胞》子课题:关键功能基因模块重构与优化,(2018YFA0900303),2019–2024
4. 湖北省环境微生物工程技术研究中心技术创新平台建设,湖北省中央引导地方科技发展专项,2018–2020,2018ZYYD004
5. 废弃生物资源发酵生产聚γ谷氨酸和乙醇关键技术研究,湖北省技术创新专项重大项目,2018–2020(2018ACA149)
6. 瓜类白粉病高效生防制剂——Iturin A芽孢杆菌水剂的创制与应用,武汉市科技局,编号:2016060101010062,2106–2018
7. 外源和土著有益菌向根表趋化成膜和作用机制研究,编号 2015CB150505,973计划,2015–2019
8. 功能微生物二次发酵畜禽养殖废弃物有机肥技术,湖北省科技支撑计划,项目编号2014BBB009,2014–2016
9. 农用酶制剂高效制备技术,“十二五”农村领域国家科技计划课题(农用微生物制剂和酶制剂产品开发前沿共性技术研究),编号2013AA102801-52,起止限:2013–2017
10. 聚γ-谷氨酸“从头合成”工程菌株构建及发酵工艺优化,武汉市科技攻关,起止限:2013–2014,项目编号:2013020602010301
11. 盐胁迫促进地衣芽胞杆菌高效合成聚γ-谷氨酸的代谢机制,国家自然科学基金,项目批准号:31170046,起止限:2012–2015
12. 新型生物肥料发酵技术和新剂型的研究,湖北省科技攻关,项目编号2010BBB015,起止限:2010–2011
13. 农用级聚γ-谷氨酸产业化中试,农业科技成果转化资金,2010GB23600662;起止限:2010–2012
14. “聚γ-谷氨酸肥料增效剂的中试与示范”,子课题,农业科技成果转化资金,起止限:2009.06–2011.06,项目编号2009GB2G410427
15. 新型高效复合肥产业化开发,湖北省科技攻关重大专项,ZND0017;起止限:2008.01–2010.12
16. 猪链球菌和副猪嗜血杆菌培养条件和培养基的优化,十一五国家支撑计划“细菌性疫苗高密度培养技术研究与示范”子课题,起止限:2009.07–2011.12,项目编号:2009BADB4B03
17. 新型肥料增效剂——聚γ-谷氨酸的研究与产业开发,(2007度),教育部新世纪人才支持计划,编号:NCET-07-0341,起止限:2008.01–2010.12月
18. 工业酒精酵母的代谢分析,国家863目标导向课题“新型重组工业酿酒酵母的构建及其高强度和高密度酒精发酵”子课题,编号2007AA10Z359;起止限:2007–2010
19. 聚γ-谷氨酸在水稻栽培中的应用,2007,十一五国家支撑计划“长江中游(湖北)单双季稻丰产高效技术集成与示范”子课题
20. 苏云金芽胞杆菌杀虫剂微胶囊剂的研究与产业化开发,湖北省科技攻关重大专项(现代生物农药研究与产业化开发)子课题,编号:2006AA205A01;起止限:2006–2008
21. 新型生物肥料的研究与开发,湖北省科技攻关重点课题,编号:2006AA201B33;起止限:2006–2007
22. 聚γ-谷氨酸的发酵生产与应用开发的中试研究,湖北省科技攻关课题,编号:2005AA401C13;起止限:2005–2006
23. 苏云金芽胞杆菌杀虫剂发酵新技术和新剂型,国家“十五”攻关课题;编号:2004BA713B02–02;起止限:2004–2005
24. 苏云金芽胞杆菌杀虫剂发酵新技术和新剂型,国家“十五”攻关课题;编号:2001BA713B02-02;起止限:2001–2003
25. 拟除虫菊酯中间体的酶法拆分,湖北省自然基金;编号:996051;起止限:1999–2001
(二)主持承担30余项横向科研课题(略)
五、发表论文和专注
(一)出版译著和专著(第一作者或第一译者)
1. 《微生物生物技术》,2002,科学出版社
2. 《酶工程》,2008(第一版),2015(第二版),科学出版社
(二)代表性SCI/EI论文(通讯作者或并列通讯作者)
1. Efficient production of 2-phenylethanol from L-phenylalanine by engineered Bacillus licheniformis using molasses as carbon source, Appl Microbiol Biotechnol 2020, 2020,104:7507–7520
2. Engineering expression cassette of pgdS for efficient production of poly-γ–glutamic acids with specific molecular weights in Bacillus licheniformis, Front Bioeng Biotechnol 2020,8:728
3. Systematic engineering of branch chain amino acid supply modules for the enhanced production of bacitracin from Bacillus licheniformis, Metabolic Engineering Communications, 2020, MEC_e00136
4. Engineering expression cassette of pgdS for efficient production of poly-γ-glutamic acids with specific molecular weights in Bacillus licheniformis, Front Bioeng Biotechnol, 2020,
5. Facilitating protein expression with portable 5’-UTR secondary structures in Bacillus licheniformis, ACS Synth Biol 2020,
6. Construction and application of the dual promoter system for protein efficient production and metabolic pathway enhancement in Bacillus licheniformis, J Biotechnol, 2020, 312:1–10
7. Enhanced bacitracin production by systematically engineering S-adenosylmethionine supply modules in Bacillus licheniformis, Front Bioeng Biotechnol, 2020,
8. Efficient production of pulcherriminic acid in Bacillus licheniformis by multistep metabolic engineering, Appl. Environ Microb, 2020, 03041–19. doi: 10.1128
9. Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis, Appl. Microbiol. Biotechnol., 2020, 104,1:391–403
10. Enhanced production of iturin A in Bacillus amyloliquefaciens and its effect on suppression of Alternaria alternate, Process Chem 2019,
11. Enhanced production of heterologous proteins via engineering the cell surface of Bacillus licheniformis, J Ind Microbiot Biot, 2019, 46,12: 1745–1755
12. Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis, Appl. Microbiol. Biotechnol , 2019, 103, 21–22: 8799–8812
13. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA deficient strain of Bacillus licheniformis, Appl. Microbiol. Biotechnol. 2019, 103(120):4789–4799
14. High–level production of short branched–chain fatty acids from waste materials by genetically modified Bacillus licheniformis, Bioresour Biotechnol. 2019, 271:325–331
15. Metabolic engineering of main transcription factors in carbon, nitrogen and phosphorus metabolisms for enhanced production of bacitracin in Bacillus licheniformis, ACS Synth Biol, 2019, 19;8(4):866–875
16. Untargeted metabolomics analysis reveals global acetoin stress response of Bacillus licheniformis, Metabolomics, 2019, doi:10.1007/s11306–019–1492–7
17. 13C-metabolic flux analysis reveals the metabolic flux redistribution for high-level production of poly-γ-glutamic acid in dlt over-expressed Bacillus licheniformis, Front Microbiol, 2019,fmicb.2019.00105
18. Deciphering metabolic responses of biosurfactant lichenysin on biosynthesis of poly-γ-glutamic acid, Appl. Microbiol. Biotechnol. 2019, 103(10), 4003–4015.
19. Engineering of Bacillus as the efficient host strain for heterologous protein production: current progress, challenge and prospect,J Appl Microbiol 2019, 126, 1632–1642
20. Enhanced production of Bacitracin by NADPH generation overexpressing glucose-6-phosphate dehydrogenase Zwf in Bacillus licheniformis, Appl Biochem Biotechnol. 2018,187(4), 1502–1514
21. Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in Bacillus licheniformis, Biotechnol Biofuels,2018, 11:306
22. Enhancement of precursor amino acid supplies for improving bacitracin production by activation of branched chain amino acid transporter BrnQ and deletion of its regulator gene lrp in Bacillus licheniformis, Synth Syst Biotechnol, 2018, 3: 235–243
23. Enhanced synthesis of poly gamma glutamic acid by increasing the intracellular reactive oxygen species in the Δ1-pyrroline-5-carboxylate dehydrogenase gene ycgN deficient strain of Bacillus licheniformis, Appl. Microbiol. Biotechnol. 2018, 102(23), 10127–10137
24. Enhanced production of heterologous proteins by Bacillus licheniformis with defective D-alanylation of teichoic acid, World J Microbial Biotechnol, 2018, 9:135
25. Enhanced production of Poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis, Biotechnol Bioeng, 2018,10:2541–2553
26. Regulation of the Synthesis and Secretion of the Iron Chelator Cyclodipeptide Pulcherriminic Acid in Bacillus licheniformis, Appl. Environ Microb. 2018, 84(13) : 00262–18
27. The diversity and biogeography of N2O-reducing microbial communities in forest soils along a temperature gradient, Funct Ecol. 2018, 7:1867–1878
28. Development of an efficient genome editing toolkit in Bacillus licheniformis using CRISPR–Cas9 Nickase, Appl. Environ Microb., 2018,84(6):02608–17
29. Rational design and medium optimization for shikimate production in recombinant Bacillus licheniformis strains, Process Biochem. 2018, 66:19–27
30. A novel strategy to improve the γ-PGA production by overexpression of global anaerobic regulator Fnr in B. licheniformis WX-02, Appl. Biochem. Biotechnol. 2018, 4:985–970
31. Acetolactate synthase from Bacillus licheniformis is an efficient for acetoin/butanediol and L-valine biosynthesis, Bioprocess and Biosyst Eng, 2017, 41(1):87–96
32. Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2, Res Microbiol, 2017, 168: 515–523
33. Lichenysin production is improved in codY knocked-out Bacillus licheniformis by addition of precursor amino acids, Appl. Microbiol. Biotechnol. 2017, 101:6375–6383
34. Improvement of glycerol catabolism in Bacillus licheniformis for production of poly-γ-glutamic acid, Appl. Microbiol. Biotechnol. 2017, 101: 7155–7164
35. Identification and High-level Production of Pulcherrimin in Bacillus licheniformis DW2, Appl. Biochem. Biotechnol. 2017, 183(4), 1323–1335,
36. High-level production of α-amylase by manipulating the expression levels of Alanine racamase in a food-grade expression system in Bacillus licheniformis, Biotechnol. Lett. 2017, 39(9):1389–1394
37. Optimization of inexpensive agricultural byproducts as raw materials for bacitracin production in Bacillus licheniformis DW2, Appl. Biochem. Biotechnol. 2017, 183(4):1146–1157
38. A novel strategy to improve protein secretion via over-expression of signal peptide peptidase SppA in Bacillus licheniformis, Microbial Cell Fact, 2017, 16:70
39. Enhancement of acetoin production from Bacillus licheniformis by 2,3-butanediol conversion strategy: metabolic engineering and fermentation control, Process Biochem, 2017, 57:35–42.
40. Microbial production of Nattokinase: current progress, challenge and prospect, World J Microbiol Biotechnol, 2017,33(5):84.
41. Glutamate dehydrogenase ( RocG ) plays a key role in glutamate synthesis for Poly-γ-glutamic acid production in Bacillus licheniformis WX-02, Enzyme Microb. Technol., 2017,99:9–15
42. A novel approach to improve poly-γ-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02,Sci. Rep, 2017, 7: 43404
43. Use of B. amyloliquefaciens HZ-12 for high-level production of the blood glucose lowering compound, 1-deoxynojirimycin (DNJ), and nutraceutical enriched soybeans via fermentation, Appl. Biochem. Biotechnol., 2017,181:1108–1122
44. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol, Biotechnol. Biofeul, 2016, 9:117
45. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco, 2016,103:1–12.
46. Enhancement of poly-γ-glutamic acid production by alkaline pH stress treatment in Bacillus licheniformis WX-02, J. Chem. Technol. Biotechnol 2016, 91:2399 –2403
47. High-level Expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase, J. Appl Microbiol, 2016, 121:704–712
48. Enhancement of L-valine production in Bacillus licheniformis by blocking three br anched pathways, Biotechnol. Lett. 2015, 37: 1243–1248
49. Comprehensive transcriptome and improved genome annotation of Bacillus licheniformis WX-02, FEBS Lett, 2015, 589:2372–2381.
50. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization, J Ind. Microbiol. Biotechnol., 2015, 42:287–295,
51. A new strategy for enhancement of poly-γ-glutamic acid by multiple physicochemical stresses in Bacillus licheniformis, J. Chem. Technol. Biotechnol. 2015, 90:709–713
52. Poly-γ-glutamic acid modified magnetic nanoparticles for fast solid phase extraction of trace amounts of Cu (II) and Pb (II), Analytical Methods, 2014, 196:9800–9806
53. Decreased tobacco-specific nitrosamines by microbial treatment with Bacillus amyloliquefaciens DA9 during Air-curing Process of Burley Tobacco, J. Agri. Food Chem., 2014,62:12701–12706
54. Deletion of meso-2,3-butanediol dehydrogenase gene budC for Enhanced D-2, 3- butanediol production in Bacillus licheniformis, Biotechnol. Biofeul, 2014,7:16
55. Physiological and metabolic analysis of nitrate reduction on poly-gamma-glutamic acid synthesis in Bacillus licheniformis WX-02, Arch Microb. 2014, 196:791–799.
56. Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin gene cluster, Appl. Microbiol. Biotechnol. 2014, 98:8895–8903.
57. Enhanced expression of pgdS gene for high production of poly-γ-glutamic aicd with lower molecular weight in Bacillus licheniformis WX-02, J. Chem. Technol. Biotechnol 2014, 89:1825–1832
58. Sample preparation for the metabolomics investigation of poly-gamma-glutamate-producing Bacillus licheniformis by GC-MS, J Microbiol Method, 2013, 94:61–67
59. Simulation and prediction of the thuringiensin abiotic degradation processes in aqueous solution by a radius basis function neural network model, Chemosphere, 2013,91:442–447
60. Genome Sequence of Bacillus licheniformis WX-02, J. Bacteriol. 2012, 194:3561–3562
61. Co–producing iturin A and poly-γ-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3-10, World J Microbiol Biotechnol, 2012, 28:985–991
62. Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-γ-glutamic acid. Biotechnol Lett, 2011. 33(9):1837–1840
63. Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09, Process Biochem., 2011,46:390–394
64. Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-γ-glutamic acid, Appl. Biochem. Biotechnol., 2010, 160: 1332–1340
65. Efficient screening and breeding of Bacillus thuringiensis subsp. kurstaki for high toxicity against Spodoptera exigua and Heliothis armigera, J Ind. Microbiol. Biotechnol., 2009, 36:815–820.
66. Production of thuringiensin by fed-batch culture of Bacillus thuringiensis subsp. darmstadiensis 032 with an improved pH-control glucose feeding strategy, Process Biochem., 2007, 42:52–56.
67. Optimization of process parameters for poly γ-glutamate production under solid state fermentation from Bacillus subtilis CCTCC202048, Process Biochem., 2005, 40:3075–3081.
六、授权中国发明专利(第一发明人):
1. 聚-γ-谷氨酸产生菌及生产聚–γ–谷氨酸的方法,发明专利号ZL 03118908.3。
2. 聚-γ-谷氨酸作为肥料吸收促进剂在农业种植中的应用,发明专利号ZL 200610018395.3。
3. 高产Zwittermincin A和晶体蛋白的高毒力苏云金芽胞杆菌突变株D1-23及应用,发明专利号ZL 200610124933.7。
4. 一种用植物饼粕为原料生产乳酸链球菌素的工艺,发明专利号ZL 200610019565.X。
5. 聚-γ-谷氨酸增效肥料,发明专利号ZL 200710052667.6。
6. 一种乳链菌肽基因工程菌MELgad的构建方法, 发明专利号ZL 200710052388.x。
7. 聚-γ-谷氨酸在白肋烟大田生产中的应用,发明专利号ZL200810046777.6
8. 一种地衣芽胞杆菌菌株及用途和用其生产聚-γ-谷氨酸的方法,发明专利号 ZL 200810055068.4
9. 利用环境压力提高芽胞杆菌发酵聚-γ-谷氨酸产量的方法, 发明专利号ZL 200910272770.0
10. 高效解磷的丁酸梭菌A5-4及应用,发明专利号:ZL 201010153419.2.
11. 一种生产多功能生物有机肥的方法及其应用,发明专利号:ZL 201110125278.8
12. 紫云英根瘤菌高密度发酵工艺,发明专利号ZL 201110047474.8
13. 解磷恶臭假单胞菌L13及其发酵工艺,发明专利号ZL 201110047420.1
14. 一株降低烤烟烟叶亚硝胺的恶臭假单胞菌T2-2及用途,发明专利号:ZL 201110090798.X
15. 一种高地芽孢杆菌及其在烤烟上部烟叶人工陈化中的应用,发明专利号ZL 201110057928X
16. Γ-聚谷氨酸或其盐作为添加剂在乳制品中的应用, 发明专利号:ZL 200910272421.9。
17. 一种戊糖片球菌高密度发酵培养基及发酵方法,中国发明专利号:ZL 201210233896.9
18. 一种复合微生物肥料及其制备方法,中国发明专利号:ZL 201210105105.4
19. 一种烟碱降解菌及其应用,发明专利号ZL201310616712
20. 一种携带丝氨酸乙酰转移酶基因的地衣芽孢杆菌菌株及其构建方法与应用,发明专利号ZL 201410063546
21. 一种操纵子bacABC拷贝数倍增和敲除recA基因的地衣芽孢杆菌及其构建方法,发明专利号 ZL 2014104808281
22. 聚γ–谷氨酸作为农药粘附剂的应用,发明专利号ZL 201510893337.4
23. 一株产纳豆激酶的地衣芽胞杆菌工程菌和用该菌生产纳豆激酶的方法,中国发明专利号ZL 201310562366.3
24. 一种粉状毕赤酵母高密度发酵工艺,发明专利号ZL2013105143191
25. 地衣芽胞杆菌表达宿主,中国发明专利号:ZL 201310562150.7
26. 一种解钾微生物及其在作物种植中的应用,发明专利号ZL 201510729377.5
27. 一株高产拮抗烟草青枯病活性物质的内生解淀粉芽胞杆菌,发明专利号 ZL 201510698909.3
28. 一种有机废弃物处理的耐高温腐熟菌剂及其应用方法,发明专利申请号201510852975.1
29. 一种提高芽孢杆菌生物量的基因工程改造方法,中国发明专利号:ZL 201610821676.6
30. 一种用于有机废弃物处理的脱臭菌剂及其应用方法,发明专利号 ZL 201510698940.7
31. 强化YvbW表达的地衣芽胞杆菌在杆菌肽生产中的应用,中国发明专利号:ZL 201810246295.9
32. 敲除malR的地衣芽胞杆菌菌株在杆菌肽生产中的应用,中国发明专利号:ZL 201810898060.8
33. 一株可以高产聚γ-谷氨酸的地衣芽胞杆菌工程菌,发明专利号:ZL 2016110436073
34. 一株可以高效分泌纳豆激酶的地衣芽孢杆菌工程菌,中国发明专利号:ZL 201410417443.0
35. 一种降低烟草特有亚硝酸胺的解淀粉芽胞杆菌DA9及其应用,发明专利号:ZL 201410548352.0
36. 一种基于核糖体结合位点改造的启动子优化方法,发明专利号:ZL 201710062695.X
37. 4-氨基丁酸氨基转移酶在提高伊枯草菌素A发酵产量中的应用,ZL 201910685428.7
38. 一种提高地衣芽胞杆菌外源蛋白分泌水平的方法, 发明专利号:ZL 201710052525.3
39. 苯丙酮酸脱羧酶突变体M538A在生物发酵生产苯乙醇中的应用, 发明专利号:ZL 201910688005.0
40. 地衣芽胞杆菌谷氨酸脱氢酶突变体S277W在聚γ-谷氨酸合成中的应用,发明专利号:ZL 201911115629
41. 消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用,发明专利号:ZL 2019112360477
七、获奖
1. 微生物农药发酵新技术新工艺及重要产品规模应用,国家科学技术进步奖二等奖,2006-J-201-2-14-R02,2006,朱昌雄,陈守文,宋渊,于毅,关雄,蒋细良,刘红彦,杨自文,朴春树,李季伦
2. 聚γ-谷氨酸发酵生产关键技术及农业应用,湖北省科技发明一等奖,2014,陈守文,喻子牛,王昌军,张似松,汤三洲,李俊辉
3. 聚γ-谷氨酸及其增效肥在烟草上的应用,湖北省烟草公司科学技术进步奖二等奖,2010,陈守文,王昌军,李进平,祖秉桥,柯云,杨树,梁立军,喻子牛,童康琼,杨春雷
4. 烟草秸秆生物有机肥研制与产业化应用,2015,国家烟草专卖局科学技术进步奖一等奖,杨树,黄树立,谭志平,祖秉桥,王昌军,马昕,等,陈守文(16)
5. 新型高效秸秆腐熟剂及秸秆生物肥料的研制与应用,2015,大北农科技创意奖,陈守文,冀志霞,秦兴成,王金梅,徐迪红,马昕,陈建刚,杨欢
八、招贤纳士
本实验室长期招聘研究生、博士、博士后和科研工作人员,待遇从优,欢迎加盟。了解更多详情,请登录微生物工程实验室主页,网址:http://microbeng.hubu.edu.cn/